The Coming Wave


What do all of the companies to the left have in common? 

All have integrated additive manufacturing into their business operations! 

Of course these are large corporations, but an increasing number of sole proprietorships are coming to appreciate the advantages additive manufacturing offers them.  Certainly, this technology is a boon to the auto and airplane maker, but not less so to the local plumber down the street. 

No matter what your business produces, no matter how large or small your organization, additive manufacturing can streamline your processes and save you money.

Why is this?


Additive manufacturing (AM) is an innovation in manufacturing processes that mitigates existing production and product development trade-offs.  The result? Reduced capital is required to affect scale and scope of production.

    • Less capital is required to achieve economies of scale. 
    • Barriers to entry into a given product market are lowered. 
    • Return on investment is maximized.
    • Greater production flexibility and product customization is available per unit of capital. 
    • Marketplace differentiation is maximized. 

That’s the big picture!

Multinational Ikea is investing heavily into 3D printing to customize products for customers.
Startups are using additive manufacturing to offset capital expenses.
Established independent contractors are using additive to create innovative solutions for their clients.

More specifically, here are some of the ways AM can impact producers:

  • AM streamlines scheduling efficiencies
    • Rapid prototyping: Traditionally, prototype development involves custom tooling, coordination with external suppliers, and multiple hand-offs. Along with the delays, there is risk of miscommunication. AM largely eliminates these delays and risks.
    • Rapid design iteration: Reworking of a design ordinarily involves substantial effort and time since the production process must start again from the beginning. AM allows for seamless prototype creation and expedites design iteration.
    • Strategic alignment: 3D printing new product designs not only enables technical validation, but also accelerates your organization’s alignment on that new design—a key success factor, but often overlooked.
  • AM reduces costs
    • Less need for outsourcing: Traditional manufacturing methods (including creating manufacturing prints and layouts, programming CNC machines, and designing tooling) have historically defined the cost structure. However, with AM, prototypes can now be created inexpensively and in-house, without need for change orders.
    • Material reduction: Elimination of scrap and tooling often offset the higher per-volume costs of raw materials. AM can therefore dramatically reduce a prototype’s total material cost.
  • AM enhances product
    • Iterative design: Accelerated prototyping means more design and review cycles during product development.
    • Designer empowerment: Faster and cheaper prototyping reduces barriers to testing new product concepts. This cultivates innovation.
    • Stakeholder input: Because AM allows in-house product development, stakeholders inside and outside the company can more easily discourse with the designer and each other.
    • Market responsiveness: Producers can respond faster to market and customer demands, fix design flaws, and counter the competition.
  • AM simplifies manufacturing
    • Improved part characteristics: A design’s geometric complexity can be improved without great expense.  In-house designers can incorporate complex curvatures, nonstandard and varying wall thicknesses, and low-density volumetric filling easily and inexpensively.
    • Customer-specific product creation: Product iterations can be made-to-order for a given customer.
    • Decreased system complexity:  Components that previously needed assembly can often be 3D printed as a single unit — reducing system complexity and enhancing quality.
    • Nontraditional sources of design information: As product designs become increasingly digitized, opportunities for reverse engineering increase.
  • AM Reduces Constraints
    • Production location: Design and manufacturing can now happen virtually anywhere. Companies can dramatically reduce the cost and logistics of moving products from manufacturing locations to end users.
    • Tooling constraints: Product design is no longer constrained by mold and tooling requirements. The design process is now accessible and there is headway for invention.
    • Batch size: A truly single-unit minimum batch size allows on-the-spot production of short-run components as users wear them down in the field or imagine ways to customize them.
    • Waste: Material waste is minimized as designers and manufacturers find ways to complete tasks with less material and energy, and as AM components replace tooled parts.

It’s an impressive list, isn’t it? 

With such a vast array of benefits, you might be asking yourself how and where AM would fit within your organization. 

The introduction and effective use of of a new process is not merely a matter of an equipment purchase. i3D can walk you though a Seven-Step Assessment to help determine where additive manufacturing can best fit in your organization. We will help you maximize its benefits within your organization so you can chart a path to the future.


Aluminum. Common! But NOT boring. We’ll intro this blog post with some of the basics about this amazing metal and its alloys, and then move on to what we suspect will really grab you — its utility in 3D printing and design considerations you should have in mind when using it.

This article is divided into 4 sections, and each one is relevant to 3D printing:


The Fuller Moto 2029 Majestic features 3D printed aluminum parts on a retro frame based on the French classic 1929 Majestic.
Possible replica of the aluminum cutlery used by Napoleon III.

Did you know that Aluminum is the most abundant metal in the Earth’s crust? So perhaps it isn’t surprising that humanity has found so many uses for it. Aluminum is the most widely used metal in the world. In fact, no other metal compares when it comes to the sheer span of its applications. 

Aluminum is so useful and so popular because it is:

  • Lightweight
  • Strong
  • Corrosion resistant
  • Durable
  • Ductile
  • Malleable
  • Conductive
  • Odorless

For a metal, Aluminum has a low melting point (660°C /1220°). This is higher than PEEK, so in a sense, aluminum is a midpoint between plastics and more robust metals like stainless.

Did you know that Aluminum is also an environmentally conscious choice? The Aluminum Association estimates that 75% of the aluminum ever produced is still in use today!

It is 100% recyclable and recycling it requires only 5% of the energy required in new aluminum production. Importantly, recycling Aluminum does not compromise its natural properties.

Interesting fact about aluminum…

Despite the fact that it is so common, it wasn’t extracted into useable metal form until the 1800’s. That’s because raw aluminum doesn’t exist naturally. It has to be extracted (most popularly today from bauxite). At the time, aluminum was considered even more valuable than gold. Napoleon III served his guests with aluminum (not gold) cutlery not unlike the set shown in the picture in the margin.


Made in Canada Quad-Antennae produced jointly by Burloak, MDA and the NRC.

Even though you can find aluminum everywhere – from muffin tins to your iPhone — it is most commonly used in alloy form.

Why? Because while aluminum is common and useful, it is not the ‘best-in-class’ when it comes to different features. For example, while aluminum’s thermal conductivity (237) is comparatively high, it is only about 60% of copper. Creating alloys that blend aluminum and copper (series 2xxx) enhances thermal conductivity.

Each standard aluminum alloy designation was designed and optimized for certain uses. Alloy 6061, for instance, is suited to structural applications, and alloy 7075 for aerospace. Companies even develop custom aluminum alloys to better suit their needs (E.g. Alferium, Magnox, and Titanal).

Aluminum is broadly categorized into 3 groups: Commercially pure, heat treatable, and non-heat treatable alloys. Aluminum series include:

  • 1xxx: Commercially pure (99%) aluminum, most commonly used in transmission (power) lines and food packaging
  • 2xxx: Heat treatable alloy,. Copper is used as the principle alloying element and can be strengthened significantly through solution heat-treating.  These alloys possess a good combination of high strength and toughness, but do not have the same degree of atmospheric corrosion resistance as many other aluminum alloys. 
  • 3xxx: Manganese is the major alloying element in this series, often with smaller amounts of magnesium added.  However, only a limited percentage of manganese can be effectively added to aluminum.
  • 4xxx: 4xxx series alloys are combined with silicon, which can be added in sufficient quantities to lower the melting point of aluminum, without resulting in brittleness.
  • 5xxx: Magnesium is the primary alloying agent in the 5xxx series and is one of the most effective and widely used alloying elements for aluminum.  Alloys in this series possess moderate to high strength characteristics, as well as good weldablility and resistance to corrosion in the marine environment. 
  • 6xxx: Heat treatable alloy. The 6xxx series are versatile, heat treatable, highly formable, weldable and have moderately high strength coupled with excellent corrosion resistance.  Alloys in this series contain silicon and magnesium in order to form magnesium silicide within the alloy. Extrusion products from the 6xxx series are the first choice for architectural and structural applications.
  • 7xxx: Zinc is the primary alloying agent for this series, and when magnesium is added in a smaller amount, the result is a heat-treatable, very high strength alloy. 
  • 8xxx: This series for wrought aluminum is a bit of a catch all for aluminum alloys containing elements not mentioned above, or a more diverse variety of elements (like alloy 8006)


You may already realize that certain metal printing technologies (such as SLM, DMLS and DED) require aluminum powder even when the component being manufactured is of a different metal.

If you would like a quick overview of metal additive processes, please click here.

While there are a number of ways to create metal powder (gas atomization, granulization, electrolysis, chemical), the best aluminum alloy powders are manufactured by inert gas atomization, a process that shoots an intense blast of inert gas at droplets of liquefied metal (blast a shot of air at running water and you’ll get the basic idea). Proper quality controls are designed to ensure uniform powder morphology, which is critical in ensuring optimal material printed density.

The powders shown in the accompanying pictures are of the AlSi10Mg alloy by Osprey Saandvik, and show a near uniform size and shape. The AlSi10Mg powder is similar in composition to alloy 6061, and is well suited to thin walled and complex geometries, and lightweight aerospace and transportation applications.

The AlSi10Mg was designed for powder bed fusion 3D printing, and when used with SLM printers like the EPlus3D line of SLM printers can achieve densities of 99.9%.

Other aluminum powders include AlSi7Mg from Osprey Saandvik, and a series of alloys by Rusal that include 2xxx series AlCu RS-230, and higher strength AlSiCu RS-320.

The aluminum powder is melted and fused together with a laser to produce metal parts of equal quality to machined models. 3D-printed aluminum doesn’t look like traditional shiny milled aluminum. Instead, it has a matte gray finish with a slightly rougher and less defined surface. The subtle sparkle you’ll notice is caused by the silicon in the alloy.

Please contact us for more information about the EPlus3D EPM line of SLM printers, and Osprey Saandvik and Rusal powders.


3D printed pistons tested in the Porche 911 GT2 RS could add 30HP
Heat exchanger by Eplus3D and the Harbin Institute of Technology
Complex structural supports like this one designed by Eplus3D application engineers adds structural rigidity without increasing the net weight.

One of the biggest advantages of metal 3D design and printing is the accommodation of complexity. That complexity take the form of nesting – creating parts with internal channels and features that aren’t possible to manufacture any other way – and lightweighting.

Both of these features have tremendous practical applications. You can print a multi-part assembly as one unit, drastically cutting down in manufacturing and assembly time, and developing a more economical and efficient parts overall.

Here are a just a few areas where 3D printed aluminum is blazing a path forward.

Engine components
Aluminum’s light weight and high thermal conductivity makes it an ideal choice for engine blocks and components. The prime enemy of any engine (other than neglect or accidents) is heat, so thermal conductivity is important to minimize wear due to excessive heat. The majority of engine’s currently in production are made of aluminum, as opposed to cast iron.

Additive’s strengths have allowed for a rethink of a great number of engine components, including the design of pistons to enhance performance and cooling, connecting rods, intake manifolds, and so forth. Ford designed a high performance manifold was uniquely suited to 3D printing. The manifold allows for the greater air intake required by an all-aluminum 3.5 litre 914 horsepower V-6. 3D printing it also reduced waste and cut back on prototyping time and cost.

Other Auto Components
Still related to automotive use, 3D printed aluminum has found growing use in other automotive applications. For example, Eplus3D designed a mono-form heat exchanger in collaboration with Harbin Institute of Technology. This heat exchanger was designed for an award winning electric race race, and is created as a solid unit, reducing the potential for ruptures or leaks due to seams.

Drone/UAV Components
Lightweight aluminum components in drone production increase the drone’s durability and allow greater versatility for attachments (such as cameras). While cost conscious producer of personal use drones still rely heavily on polymer components, the use of aluminum enhances the drones robustness and re-usability for commercial application.

For example Cobra Aero, on contract for the American military, is 3D printing a new engine casing for its UAV product.

Robotics is very broad field that ranges from from articulated industrial robotics used for fabrication, to the the creation of endo-skeletal structures for more classically humanoid robots, or exoskeletal assists, the use of 3D printed aluminum components is almost a no brainer. Here again additive design grants broad benefits when it comes to enhancing strength and lightweighting.

The variability of the human body generates a high requirement for custom components when considering the production of prosthetics. Metal 3D printing makes use of lightweight, durable aluminum components more accessible than ever before.


You will want to account for each of these in your product or part design. While many of the considerations apply to metals generally, work by Eplus3d application engineers have found that aluminum is a comparatively more accommodating material to work with, so additional comments have been included to distinguish aluminum.

This cut-away of monoform conduit box by Eplus3D illustrates shell thickness.
    As a rule of thumb, minimum wall thickness of any aluminum part should be 1mm. However, where post-processing is needed, wall thickness may need to be increased. (E.g. A part that will be milled or blasted before use.)

    Aluminum lends well to printing very fine detail.

    While not the only application, this is a great benefit if the printed components need to be identified with a serial number. Fine detailing like engraved or embossed text will print very nicely if you outline the letters with a line thickness of 40µm and use a minimum height of 40µm (and/or a minimum depth of 15µm).

    Some SLM printers like the Eplus3D’s EPM line can actually print in detail as small as 25µm.

    Always an important consideration when 3D printing. Apart from aesthetics, part geometry can govern part strength, surface adhesion, support use and the amount of post-processing. Generally speaking, it is better to use steep angles (greater than 35°) as this makes it easier to achieve a quality smooth surface.

    A note about supports…
    The use of supports is a subset of part geometry but is important enough to warrant further consideration. As useful as supports can be, ideally the designer wants to minimize if not completely remove the need for supports. Supports are useful to keep the model rigid while building and prevent internal stress and deformations, but….

    They need to be removed. And support structure removal can require a lot of work, which is compounded by the number of supports. With DMLS technology, a high-powered laser sinters Aluminum powder to form the print. However, support structures are required, (and in fact, are automatically generated and 3D printed. They keep the model rigid during printing and prevent internal stress and deformations, but post print, manual removal of supports may require grinding, sanding and sandblasting for smooth finish.

    Interestingly, Eplus3D application engineers have noted that printing aluminum using the EPM series SLM printers have been more accommodating of flatter angles (to almost 15°, versus the normal angle of 45°). This benefits the designer by support reduction, and further facilitation of design complexity such as larger circles or holes.

    For more information on post-processing, please review our article: Mind of Metal: Post-Processing.

    It is usually advisable to plan for lower overhang angles and bigger holes than when 3D printing steel.

If that wasn’t more than you wanted to know about Aluminum 3D printing, we’d love to the chance to answer your questions! Contact us.


In light of the series of ASTM F42 committee dedicated to updating and continuing their work on AM standards, this article has been updated and re-released.

This article is fairly length and discusses:

You can click on any of the links above to jump to those specific sections.

Additive manufacturing (AM) has – and continues to – evolve dramatically in the sophistication of its technologies, processes, and materials.  A broad range of industries ranging from aerospace to consumer products is using AM to refine the development and production of products. The explosive growth in AM and how practitioners are deploying it is supported by a wide number of metrics, including the 20 fold gown in AM-related patents and the astounding growth in the sale of industrial AM systems over the past 4 years.

Fueled by growth of Industry 4.0 and the digital thread, AM has emerged as a catalyst in reshaping underlying assumptions about product complexity, supply chain logistics, and possibly even the manufacturing business model itself.

However remarkable the growth thus far, challenges lie on the horizon that if unaddressed could impede broader implementation of AM in industrial settings. And among those challenges, the lack of a widely accepted comprehensive set of technical standards within AM looms large.

A Quick Note on the Role of Electronics Standards

There are a wide range of existing and applicable standards governing electronics. These differ from the standards being discussed in this article because they apply to the machinery itself rather than to the additive process itself. But they are no less important. Standards exist that allow standards organizations like the Canadian Standards Association (CSA), the Federal Communications Commission (FCC) and the Conformitè Europëenne (CE) to test and certify 3D printers.

Some of those standards include:

  • TUV Machinery Directive 2006/42/EG
  • ISO 12100, safety of machinery – risk assessment
  • UL/CSA/EN 60950 – safety standard for information technology equipment
  • IEC 60204-1 – electrical equipment of industrial machines
  • IEC 62368-1 or UL/CSA/EN 61010-1 – safety standard for electrical equipment for measurement, control and laboratory use
  • RoHS 2011/65/EU; REACH – chemical emission – registration, evaluation, authorization and restriction of chemicals
  • EN 60825-1 – safety of laser products

DEFINITION – Industry 4.0 : Industry 4.0 is a reference to what might otherwise be called the the Fourth Industrial Revolution. This is the ongoing automation of traditional manufacturing and industrial practices, using modern smart technology. Large-scale machine-to-machine communication (M2M) and the internet of things (IoT) are integrated for increased automation, improved communication and self-monitoring, and production of smart machines that can analyze and diagnose issues without the need for human intervention.

DEFINITION – Digital Thread: Tech Target defines the digital thread as “a communication framework that connects traditionally siloed elements in manufacturing processes and provides an integrated view of an asset throughout the manufacturing lifecycle.”

Why do standards matter?

Standards are necessary to ensure that such rules of the game are established, adhered to, and respected by all parties. Standards have been a fundamental part of the manufacturing background for decades, they are essential as they outline the parameters that must be met to deliver a quality product.

It’s no different for AM

In many ways, AM is a ‘democratization’ of the production process. A digital file designed by one person can be modified and produced differently by a hundred different people by changing any number of settings used in the items creation. Given the capacity for endless variations, standards become all the more important because they define quality, pro­vide benchmarks and best practices.

Quality end-use, functional parts are already being produced via AM but widely ad­opted standards would help the quality over longer production runs. Ongoing efforts to establish AM standards should define the requirements for AM production, helping to enhance operational consistency and ensure quality as pro­duction and market adoption grows. As standards help assure quality for a larger volume of parts, the AM industry can scale, reach new levels of efficiency, and garner additional benefits from AM use.

Quality standards can also be particularly im­portant for AM because there are arguably more factors to consider than for conventional manufac­turing; now, digital design standards, interoperabil­ity standards, layer-by-layer material/build process parameters, microstructure strength, porosity, and post-processing/curing standards, among others, should all be considered. In a complex industry with a host of variables at play, AM standards should provide the “guidebook” for implementation.

Below is a shortlist of potential benefits that can arise from the application of standards to the use of AM:

  • Risk Mitigation: While standards will not mitigate all risks associated with any manufacturing process, adopting them can mitigate and control risks in ways that cross many domains such as worker safety, security of in­formation, intellectual property, the manufacturing process, and supply chain management.

  • Improved Repeatability: In the highly customizable environment represented by AM, standards can define key parameters — materials, print process, material storage, etc. In effect, stan­dards should provide a sense of predictability and repeatability within the AM ecosystem.

  • Quality Benchmarks: Quality is explicitly “the use of a standard against which other things of similar kind are com­pared.” As such, standards provide the benchmark criteria against which the quality of a company’s AM process—and products of that process—can be com­pared. A primary aim of standards should be ensure that designs, printers, and settings achieve a desired quantifiable and quality outcome.

  • Greater Efficiencies: By virtue of helping to accomplish the first three benefits, AM standards may also provide an opportunity for companies to focus their processes and practices in a more optimally efficient and less wasteful way. For example, the use of a standard output file format for the instructions needed to print a part would reduce the need to develop a custom file format and, in the process, enable greater interoperability—and effi­ciency—among different players across the AM eco­system. This can also reduce the need for rework during production, thus again reducing waste and improving return.


That seems like a big list of features and you would be right to ask…how exactly?

  • Part Design: AM enables the creation of parts that can ex­ceed traditional design limitations, even mimicking a variety of organically shaped, nongeometric bio-inspired design. These new designs allow parts to exceed previous constraints and dem­onstrate increased feats in strength, weight reduc­tion, and even product performance. But in order to allow a quality assurance process to gauge whether the production is being controlled, for instance, traditional standards may not suffice.

    Revised and new standards have begun to evolve to bridge industry specific gaps to reflect de­sign within the AM ecosystem.

  • Production and Materials: Many traditional manufacturing standards are well estab­lished and may be applied to AM as well. However, there are areas where ad­ditional research is required address uncontrolled variables introduced by AM production processes. For instance, powdered bed fusion metal printing processes may trap miniscule amounts of gases within the printed material creating potential anomalies in the final part. Analysis and the introduction of production standards would be beneficial to account for such anomalies.

    Since materials used in AM are commonly found in traditional manufacturing processes, stan­dards related to storage, handling, and transporta­tion are relatively well articulated. It is still im­portant consider what the printing process itself does to the material, and how this may be used to improve the product. For example, AM may introduce inherent molecular de­formations which can actually prove beneficial in high-stress end-use cases where temperature, pressure, or material can actually be balanced out by the material stresses.

    This would require standards against which materials, printing processes, and in­herent material stresses can be judged.

  • Digital Thread: Applying standards on the data produced from the AM processes is the final and perhaps most challenging area. Our digital world is developing at an exponential pace as data formats and processing requirements seem to evolve every few years. With the “thread” approach to manufacturing becoming increasingly pervasive, it could be almost essential to consider the longevity of the AM digital presence and how rapidly anything we produce digitally will likely no longer be transferrable to the next file for­mat.

    While standards such as the .STL—a standard format for sending instructions to the 3D printer— exist and are widely applied today, there is an ever-present desire for something better. A major chal­lenge facing the application of data standards is how to build in longevity into the standard. Thus, AM should begin to invest effort in producing data and information standards that can be easily updated and copied to the next generation of hardware and computers.

Needs Assessment

Recognizing your organization’s need to identifying

  • Needs Assessment: This first step is likely the most important. Define your parameters and conceptual benchmarks and steps in the process where the company needs a standard. This includes determining your expectation of success.

  • Determine the Variables: As an example, determine printer settings available, then print using each variable and measure the outcome to understand the impact of the setting on the part printed.

  • Data Collection: Determine how you will measure the results of each pass of your process and variable settings. An example might be to identify how you will measure if your additively manufactured part met reliability requirements or how you plan to measure the humidity inside a printer during operation.

  • Experiment: Run your experiment several times, testing each variable in isolation, and measure your results.

  • Observe and Analyze: Analyze the data collected to see which variable settings provide the best outcome or best achieves your AM objectives. The best settings may likely become your new standard where industry standards do not exist.

Partial List of Existing Standards

Despite its relative newcomer status on the manufacturing stage, AM has garnered a fair amount of attention from standards organizations globally and a fair amount of work has already been done to bridge the gap in standards. Below is a partial list of of AM related standards and the organizations that have fostered them. Both the ASTM (F42) and ISO (ISO/TC 261) have formed committees that meet regularly to review and discuss modifications and additions to additive standards.

  • ISO/ASTM 52900 – Additive Manufacturing General Principles: co-publication between the American Standards for Technology and Materials and the International Organization for Standardization replaces the now cancelled ASTM F2792 Standard Terminology for Additive Manufacturing Technologies and serves as the basis for subsequent standards development.
  • ISO/ASTM 52901: 2017 – Additive Manufacturing General Principles – Requirements for Purchased AM Parts: gives guidelines for the elements to be exchanged between the customer and the part provider at the time of the order, including the customer order information, part definition data, feedstock requirements, final part characteristics and properties, inspection requirements and part acceptance methods.
  • ISO/ASTM 52910: 2018 Guidelines for Design for AM – This document gives requirements, guidelines and recommendations for using additive manufacturing (AM) in product design.
  • ISO/ASTM 52921: 2013 – Standard Terminology for Additive Manufacturing, Coordinate Systems and Test Methodologies – includes terms, definitions of terms, descriptions of terms, nomenclature, and acronyms associated with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize terminology used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems.
  • ASTM F3049 – 14 – Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes
  • ASTM F3122 – 14 – Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes
  • AWS D20.1/D20.1M:2019 – American Welding Society Specification for Fabrication of Metal Components Using Additive Manufacturing – This specification provides the general requirements for fabrication of metal components using additive manufacturing. It provides guidance for the interaction between the Engineer and the Contractor. It includes the design, qualification, fabrication, inspection, and acceptance of additively manufactured components. A commentary for the specification is included.
  • DNVGL-ST-B203 – Additive Manufacturing of Metal Parts – This is the first Standard to provide an internationally accepted framework for producing and using high quality additively manufactured metal parts for the oil & gas, maritime and related industries. It introduces approaches to manage the quality of additively manufactured metal parts, with each approach adapted based on the criticality of a part’s function. This helps to ensure predictability in the supply chain, reducing lead time and cost.
  • FDA – Technical Considerations for Additive Manufactured Medical Devices – Guidance for Industry and Food and Drug Administration Staff


Pill containers. Plastic furniture. Containers for cleaning fluids. Rubbermaid storage bins.

Since its origins in 1951, polypropylene (PPE) has become one of the most common thermoplastics, accounting for over 22% of global plastic production (73.7 million tonnes of 330 million tonnes) in 2016. PPE is similar to polyethylene in many ways, but is stiffer and has a higher melting point. While a large proportion goes into fibres and storage containers, it has found increasing use in automotive applications where its low density and high strength has made it very useful in the ongoing drive to reduce vehicle weight. It has also found growing use in medical applications and is used to augment asphalt for road construction. Polypropylene is everywhere.

Why is it only now gaining traction in the 3D printing industry?

Despite its many virtues, there are some challenges when working with polypropylene. The good news is that solutions have been discovered and those challenges can now be mitigated. Read on!

The Strengths of Polypropylene

  • Lightweight and Tensile strength
    PPE has a high tensile strength (4,800 psi) and yet is the lightest of commodity plastics, boasting a density of between 0.895 and 0.92 g/cm³ (compared to 1.04 g/cm³ for polyethylene and 1.15 g/cm³ for nylon)
  • Elasticity and Fatigue Resistance
    PPE is considered to be a ‘tough’ material in that it can plastically de-form without breaking. It will retain its shape following a fair amount of torsion, bending and/or flexing. This makes it an ideal material when making living hinges like those on shampoo or detergent lids.
  • Chemical Resistance
    PPE is resistant to diluted bases, acids and organic solvents. This makes it a good choice for gas cans, cleaning agent containers, first-aid products, and more.
  • Water resistance
    PPE is hydrophobic. This means it does not absorb water, and when removed from an immersive state, dries quickly. This property is essential for total immersion applications in medical and industrial applications.
  • Insulation: 
    PPE has a very high resistance to electricity and consequently is very useful for electronic components.
  • Non-Toxic
    The USFDA has rated PPE food-safe. It is BPA free. Biological factors, such as bacteria and fungi, will not cause it to mold or deteriorate in quality.
  • Transparency/Optical Clarity
    Although PPE can be made transparent, it is normally produced to be naturally opaque in color. PPE can be used for applications where some transfer of light is important or of aesthetic value.

3D Printing Polypropylene: the Challenges

Like other thermoplastics, polypropylene has some drawbacks. It is UV-sensitive, has a high coefficient of thermolinear expansion, and is susceptible to chlorinated solvents.

When 3D printing, PPE has historically presented two sticky (or non-sticky?) challenges that have made it a bit daunting to 3D print:

  • This material really doesn’t like to stick to anything other than itself
  • Its semi-crystalline structure and high rate of thermolinear expansion make it prone to warp

Thankfully, these concerns can be mitigated successfully.

And the Solutions!

  • Temperature Control
    Do your best to control the temperature throughout the printing process. Stay within 5 degrees of the recommended extrusion temperature. If possible, print in a heated build chamber. If you do not have ready access to one, enclose the build environment to prevent drafts (and thereby minimize temperature fluctuations).
  • Increase Bed Adhesion
    Use brims and drafts in your design. These increase the surface area of the first layer of your print. This will reduce concentrated points of warping stresses and increase the quality of your print. After printing, they can be snipped or peeled off.

    Alternatively, adhesives like Nano Polymer Adhesive while designed for high performance filaments have shown a dramatic, universal applicability.
  • Select the Right Filament
    Polymers like PPE can be formulated with different additives to enhance certain characteristics. For example, 3Dtech introduced Hyperlite PPE. This product features an ultra low density filament that is more resistant to warping. Some filaments are produced of blended or filled PPE product that features a particular mechanical characteristic, such as tensile strength.


The News in 3D

It is spring and around the globe, more and more are sprouting, and it’s easy to understand why people would choose to have one. After all, they are inexpensive, fast-growing, attractive — and green.

No, you haven’t clicked on the wrong link; this is not a gardening blog and we’re not talking about herb gardens nor home-grown radishes. All of those descriptors apply nicely to houses constructed via additive manufacturing.

Sadly, in many countries, rising manufacturing costs mean home ownership has become only a hope and a dream for many families. Inexpensive options do exist — mobile and tiny homes, for example — but they can be difficult to mortgage and don’t always provide adequate protection from the elements. Natural disasters and political turmoil only add to the mix, displacing thousands each day and exacerbating the housing crisis.

Enter 3D printing. What a remarkable solution to many of these concerns. A small house can now be printed for just a few thousand dollars. In each of the housing developments discussed below, homes have been completed at considerable cost savings – up to 50% the cost of a comparable home traditionally constructed.

But the merits of additive manufacturing in home construction go beyond the need for affordable housing. As you can see from the photos below, such houses can resemble those in a typical neighborhood, or they can be a designer’s dream. Sure, you can still have a house with flat walls, 90 degree angles and a white picket fence around it. But for those who want to, departing from the norm to create something truly unique is easily possible and also affordable.

And fast! Even without hiring an architect to draw up plans, having your traditionally constructed home built could easily take a year. But the houses below arose with astonishing speed. Naturally, printing time will vary with design complexity and size, but construction times as abbreviated as 24 hours from start to finish are not unheard of.

As the industry continues to develop, 3D-printed housing might just become the new norm. Read on for summaries of some recent news reports.

A Milestone Project

Canadian CTV news reported this European first in April of 2021.

The Netherlands are in a serious housing squeeze. This small country is only one third the size of Florida but has over 17 million people. Hundreds of thousands of new homes are needed to accommodate its growing population — and soon.

The house you see to the right was printed out of concrete the consistency of toothpaste. The house is made of 24 hollow concrete pieces that were printed in a nearby factory and trucked to the site. Pieces were filled with insulating material and finishing details, such as the roof, were added. The 1,011 sq. ft house complies with all Dutch construction codes and took just 120 hours to print.

Everyone seems pleased. The current tenant is delighted with the acoustics when he listens to music in his home, and equally content with the peace he can enjoy when music is not playing, thanks to the concrete walls. For his part, the designer is impressed with additive manufacturing as a sustainable practice: 3D printing houses can use 30% less material.

Fittingly, this house is located in a city known for its innovation: Eindhoven, and is part of “Project Milestone” — a collaboration of construction companies with Eindhoven and the local technical university. And this little house is really just the starting point in Eindhoven. Multi-level homes are envisioned in the future.

Housing for all 50 million?

Reuters News reported this development in India in April 2021

It’s quite a challenge to be the Prime Minister of such a populous country as India. Narendra Modi has committed to a jaw-dropping 50 million new housing units by the end of 2022 under his “Housing for All” plan. Such solutions are sorely needed. In addition to the 1 to 3 million urban homeless, 65 million people live in poorly constructed slums. Living conditions in them are poor, disease spreads rapidly and the low quality homes in which they reside are vulnerable to natural disasters like earthquakes and cyclones.

Indian housing experts are touting 3D printing as the answer. A good quality house that withstands tropical weather conditions can be constructed inexpensively in just five days, and can be customized to suit the unique needs of the region and tenants.

The 600 sq. ft. single-storey home to the left was built by Tvasta Manufacturing Solutions in the southern Indian city of Chennai, in collaboration with home-building charity Habitat for Humanity’s Terwilliger Center for Innovation in Shelter. By the end of 2022 it may be one of many millions in India alone.

Two Firsts and a World’s Largest

CNN reported this development in the state of New York in February 2021

See that vinyl siding on the new house to the right? Think again. What appears to be siding is cleverly printed concrete. What you are looking at is the demo model of the first 3D printed home to be granted an occupancy permit in the United States. At 1900 sq. ft. it is also the world’s largest 3D printed house with such a permit, to date.

A slightly smaller model was listed in Riverhead, NY for $299,990 in early February 2021 — said to be the first 3D printed house listed for sale in the American real estate market. It’s hardly a bare-bones offering: the house features over 1,400 feet of living space, including 3 bedrooms, 2 washrooms, and a spacious 2.5 car garage. The house was constructed by the manufacturer’s Automated Robotic Construction System. Layer by layer, the foundation, exterior and interior walls and utility conduits are built out of concrete. The manufacturer, SQ4D Inc, says it costs 50% less than comparable houses in the city and is ten times faster to build.

As of May 2021, only about a dozen companies are working on 3D-printed houses worldwide. Yet the global market for 3D-printed construction is projected to grow to more than $1.5 billion within three years, according to recent research studies.

Looks like homes like these are really only the beginning!



(This article was produced in collaboration with Eplus3D and is the second article in our Mind of Metal series.  If you missed it, the article that introduced this series is here.)

pre-processing … processing … POST PROCESSING

Perhaps you’ve designed an optimized titanium hip replacement.  Or a mold with conformal cooling.  No matter how extraordinary or how utilitarian, the point is:  you are now printing with metal.  New to you!  (And kind of exciting.)   You look at the part on the build plate.  The product of all your hard work is finally ready to be put to use.

Hmm.  Or maybe not quite ready.  You may have some post-processing steps to consider.  

Post-processing can be broadly broken down into three categories or steps: 

Any one or all of these steps may apply to the printed metal part in order for it to suit its desired intent.


This step may seem a bit obvious; of course you need to remove the part from the printer before you can use it.  However, it may not be quite as simple as taking a spoon out of the kitchen drawer.  Extraction may involve:

Powder Removal
In the case of SLM, BDJ and other powder bed methods, the part will be buried in the powder used to print the part.  This  ultra-fine powder needs to be treated with caution.  Breathing or even touching it can be harmful, so you will need to exercise care to limit your exposure to it.  You may also want to give thought to sieving and reusing excess powder.   

Part Removal
Powder bed fusion processes like SLM fuse the created part to the build plate.  Consequently, the part will need to be cut off.  A bandsaw will work but if available, wire Electrical Discharge Machining may be preferable since the wire used is thinner than a bandsaw (0.20mm vs 0.45mm+) and the tolerances will be tighter to the build plate and therefore remove less material.

Support Removal
It is a good practice if possible to design metal parts with as few supports as possible because of the extra work required in their removal. However, if your structure required supports, this is the stage where you would normally remove them, though they can also be removed at the finishing stage for secondary processing. 

Stress Relief
Need for stress relief will depend on the build process.  The heating and cooling metal undergoes during the build can lead to internal stresses within the created part.  Although developments in control software have reduced the need for this step, it is sometimes necessary to relieve a part’s internal stress before it is removed from the build plate.  This can be accomplished by placing the build plate in a heated oven or furnace, and then allowing it to cool gradually and uniformly. Although stress relief requires the application of heat, we categorize this step – if necessary – in part extraction specifically because it is occurs prior the removal of the part from the build plate.


While it can sometimes be viewed as an optional step, heat treatment can have very important some cases a necessary, even in optional cases metal 3D printed parts can benefit from a heat treatment.  SLM components boast a 98%+ density and may not require as much heat treatment as BDJ components.  However, heat treatment can still be critical for functional pressure or load bearing components.  Heat treatment can involve:

Debinding/Binder Removal
When using binder jetting a completed print is considered ‘green’ and the binding agent must at least be in part removed prior to sintering. Debinding may involve heat or chemical treatment, but the goal is to remove as much of the binder as possible before further processing the print. This step is exclusive to binder jetting and involves the removal of the binding agent used to create the print by placing the component in a furnace and burning it out. 

Subsequent to the debinding process, infiltration can be used to replace binding agents and reduce part porosity.

Sintering is the process of fusing particles together into one solid mass by using a combination of pressure and heat without liquefaction or melting. Sintering can be applied to a wide range of materials ranging from plastics to metal. As indicated earlier, when applied to metal prints annealing can reduce thermals stresses, reduce potential warping and distortions, reduce porosity and strength parts.

Annealing is subjecting a part or material to heat in order to increase its ductility and reduce the hardness. This change in hardness and ductility is a result of the reduction of dislocations in the crystal structure of the material being annealed. Annealing may result when subjecting 3D printed parts to a sintering process (in the case of binder jetting), or may be used to relieve stress for SLM/DMLS parts.

Hot Isostatic Pressing (HIP)
HIP is commonly used in the casting industry to improve the fatigue life of casted parts.  It is a process that subjects metal components to elevated temperatures and isostatic gas pressure, and can be used to increase 3D metal part density.  This process can be used on almost any metal part to increase part density to 100%.


Metal parts usually require further steps to bring about the desired finish.  This is not always simply an aesthetic consideration; it can also impact the performance of fitted components.  For example, complex interlocking and dynamic components require a smooth surface to reduce friction, but not at the expense of the unit’s integrity.  (In such cases, it is very important that the part design accounts for the resultant reduction in wall thickness.)

MachiningIt may seem a little counterintuitive, but CNC machining can be used to refine dimensionally crucial features (such as holes or threads) where tolerances need to exceed 0.005”.  Micro-machining can improve the surface quality and fatigue strength. 

Manual Finishing/Polishing:  Manual polishing and finishing is laborious and time consuming and is more effective on softer metals than harder. There are a great many tools that can be used in this process including hand grinders, sandpaper, drills, carbide burrs, flapwheels and a host of other devices.  

Sand (abrasive) blasting: Far more effective than mere sanding, sandblasting is a useful way to smooth out the surface finish of metal prints.

Plating: As the name implies, plating enhances the base print with a thin metal surface layer.  This can be achieved via electroplating (electrolysis or dipping) and using any of a number of metals for plating.

Chemical Treatment: As you may be aware, this option is more commonly associated with polymer prints – anyone having taken time to subject an ABS print to acetone vapour, or PVB prints to isopropyl alcohol will understand.  While not as common, metal applications include the application of citric or nitric acid baths to passivate stainless steel (i.e. give it greater resistance to oxidation).


Does post-processing seem rather involved?  Yes, there is no doubt that it can be.  To have a realistic grasp of the time and costs associated with metal 3D printing, you will need to inform yourself as to precisely what processing your part will require.  

You will want to consider whether pre-processing variables can be adjusted in order to mitigate the amount of post processing required.  

Here are some considerations: 

Design:  The greatest strength of additive manufacturing is design freedom; therefore, adjusting the myriad possible variables and settings is the most obvious way to reduce need for post-processing.

One example is layer thickness.  A thicker layer means a faster print, but more work will be required to smooth out the print shell.  Conversely, the finer the layer, the slower the print but the finishing time is reduced.  

Another example is print orientation.  This can minimize the use of support structures, and account for any z-axis strength variations.

(Spoiler alert:  our next installment in our Mind of Metal blog series will discuss design considerations in much more depth!)

Powder:  Metal powder particles can vary in shape and range in size from 15-150μm.  Generally speaking,  finer powder increases print density and the print will be more exact and refined.  


These may also be part of the equation.  Often these are not a variable, but a requirement when certification of parts requires adherence to industry specifications.  Inspection and testing processes include: 

  • metrology
  • inspection and nondestructive testing using white/blue-light scanning
  • dye-penetrant testing
  • ultrasonic testing
  • computed tomography (CT) scanning
  • destructive testing of sample parts
  • powder chemistry analysis
  • material microstructure analysis 

In addition to industry-specific testing, there is a growing body of additive manufacturing standards available through organizations like ASME and ASTM.  


Our next post will continue our Mind of Metal series with a detailed look at design considerations for metal printing.

We would like to thank and note Eplus3D for their collaboration and input in the creation of this article.

Click here to request the Mind of Metal: the Sequel white paper dealing with post-processing.



Four Additive Design Benefits When Lightweighting Metal 3D Printed Parts

Design freedom.

Of the vast benefits offered by additive manufacturing, this is one of the most often cited. The incremental ‘layered’ building process allows for inclusion of component variations and complexities that would be impossible in traditional manufacturing.

The application and benefits of additive design can be evidenced in many ways, but one of the most dramatic examples is its impact on the process of ‘lightweighting’. As you might expect, lightweighting is the term used for the process of making components lighter. It is a growing trend in transportation, tooling, energy, health care, and a host of others.


  • Lighter components offer wide ranging benefits: from enhancing fuel efficiencies in transportation to greater viability as implants or prosthetics.  For example, a study released by the Massachusetts Institute of Technology estimated that weight reduction in vehicles could reduce energy consumption by between 12-20%. Citing a similar study, the US Office of Energy suggests that for each 10% reduction of vehicle weight, energy consumption can be reduced by between 8-12%.

  • Lightweighting allows for different material considerations. Pending application, optimized lighter materials can be used to replace heavier components, or the inverse – components can sometimes be produced using heavier, less expensive materials to replicate the benefits of lighter, more expensive materials.

  • More efficient use of material and the energy required in production make them more environmentally friendly and address a growing concern among policy makers and consumers alike.

  • Cost reduction.  Less material per component means less capital per component.

Additive manufacturing helps break down many of the hurdles to the production of lightweight components.  Here are four ways additive manufacturing/3D printing can produce lighter components:

A 3D printed intake manifold for the Ford F-150 pickup truck. Photo via Ford.

Method I – Lattice Structures

Additive manufacturing makes the use and scale of lattice structures far more accessible. Lattice structures feature a high strength-to-weight ratio. This is what makes them so useful in architectural and engineering applications (e.g. the Eiffel tower or a lattice truss bridge).

Lattice structures are three-dimensional open-celled structures composed of one or more repeating unit cells. These cells are defined by their dimensions and connectivity of their constituent struts, which are connected at specific nodes. Lattices can achieve the ideal balance of engineering strength, toughness, durability, statics, dynamics and manufacturing cost.

The relative density of crystal lattice, the shape, size, and material are adjusted by periodically duplicating a large number of single cells for design and manufacture, so as to adjust the mechanical properties of the structure, such as strength and toughness.

Examples of different lattice configurations
Sample component with dense lattice structure produced on the Eplus EP-M250

A 3D lattice structure offers a high degree of spatial symmetry which can evenly disperse an external load, reduce weight and increase load bearing capacity. In addition to engineering applications, there are healthcare applications: a hollow lattice structure features a ‘gap’ (or adjustable aperture), which can facilitate integration into the human body and the implant tissue in the application of the implant.

Lattice design is very flexible and lattice elements with different shapes, sizes and porosity can be customized to suit their use. When high structural strength is required, the shape and density of lattice cells can be adjusted accordingly with larger cells and a more complex strut-structure. Similarly, when requirements call for weight reduction, a hollow lattice structure can be integrated into the design. The hollow structure can be arranged regularly or randomly to form irregular pores. In addition, the hollow structure can also present gradient transition arrangement of variable density and thickness to meet the requirements of the overall gradient strength of the components.

Method II – Hollow Interlayer / Thin-walled Stiffened Structural Design

Additive gives the designer a wide range of design options not easily available when relying on traditional processes.

First, wall thickness of less than 1 mm can be achieved, allowing for significant weight reduction. The use of different infills (interlayers) and wall settings and thicknesses allows the designer to reduce the net weight of the component, but also to compensate for the various loads and stresses the component will have to bear.

Use of infills will then disperse external pressures across the lattice. How does this work? Consider a simple curtain rod, under a flexural (bending) load where the surface material bears most of tensile and compressive stresses.  Now imagine a core infill has been added to the rod. This will help disperse the load.  The strength of the rod has been improved without having to resort to a solid metal rod or even having to increase wall thickness.

In sum, interlayer structure has the advantages of offering net weight reduction, high bending stiffness and flexural rigidity, strength, greater stability, fatigue resistance, sound absorption and heat insulation.

Infills are widely used to reduce weight in the automotive and aviation applications, for wind turbine blades, and in ships and trains.

Honeycomb infill used in piston design/production by German automotive engineering firm IAV. Picture supplied by IAV.
Linear infill in this radiator design has the additional benefit of improving heat exchange area and heat dissipation efficiency. Picture by Eplus.

Method III – Topological Optimization

3D printing is the most efficient method of optimizing component design topology; that is to say, of identifying and removing excess material that does not affect the functionality of the part.

First, optimal material distribution within required parameters is determined. Once topology has been optimized, the structure is simulated and analyzed to complete final modeling.  It is not unusual for optimized components to be more than 45% lighter than their non-optimized counterparts.

Although some designs can be produced using traditional methods, the same degree of topology optimization is not possible. For instance, a 5 axis CNC router can be used to reduce net weight and achieve desired topology, but such subtractive methods produce waste in proportion to the material removed.

The additive process of 3D printing, on the other hand, often eliminates waste material. Even where supports are used for the product being created, waste material will be far less than in a subtractive process. Additive manufacturing is material-efficient and topology is truly optimized.

Topology optimization flow (picture by
Optimized exhaust bracket designed and produced by Eplus using the EP-M250

Method IV – Integrated Component Assembly

Anyone who has assembled a piece of IKEA furniture can attest to this sentiment: why so many parts!? The advantage for IKEA is, of course, cost savings for the company and its consumers in flat-packing. The sacrifice, often, is structural integrity.

Integrated product design focuses on reducing the number of components traditionally used. A unit traditionally produced from multiple components can often be 3D-printed as one complete unit. Not only does this enhance the strength and integrity of the overall structure, but it also renders connection structures (flanges, welds, etc.) unnecessary.

Though the focus here is lightweighting, integrated components can also offer broader benefits of reduced assembly time and required maintenance.

As we’ve tried to illustrate in this post, lightweighting affects far more than design aesthetics. The design freedom afforded by additive manufacturing provides very tangible benefits for the functionality of the end product.

Click here to request a copy of the Minds of Metal white paper.

*This article was produced in collaboration with Eplus3D Additive Manufacturing.

CANARI – CANadian Academic and Research Incentive

Canada is lagging behind. New technologies have launched a modern industrial revolution and we are barely part of it. Educators should be concerned; will the next generation be properly equipped? This technology is having profound impact across a wide swath of industries, from health sciences to architecture. But at this point in time, Canada trails other major economies in implementation of new technologies; likewise, we register proportionally less patents on new inventions and innovations. Additional evidence of this disturbing trend:

As our way of combatting this growing disparity, we’d like to introduce the CANARI:  The Canadian Academic Research Incentive.  It’s our Canadian company’s scheme to give Canadian education and Canadian research initiatives a bit of a boost: cutting edge 3D printing tech at the best possible price.


The CANARI is an aggressive price discount for qualifying educational institutions and research initiatives.


Any academic institution using or wanting to incorporate additive technologies to further educational goals. Additionally, any organization that intends to use additive technology for research and development.

  • the schoolteacher planning hands-on and motivating ways to teach
  • the researcher studying new building materials
  • the innovator who needs a prototype
  • the architect considering additive technology in residential construction
  • the company trying to modify a design to better meet client needs
  • the shop designing jigs for a new product


The CANARI can be applied to all of our products! (Price discounts vary by item and quantity; please contact us for more information.)

It is our hope that Canadian researchers and educational institutions will take advantage of the CANARI discount to advance Canadian manufacturing innovation and to equip the next generation.


This is an account of two industrial machine-tooling and sales companies and how they each choose to produce the same new product. Both make intelligent and strategic choices. Yet those choices are very different — because the two companies and their respective access to the market are different. While the companies named here are fictitious, the details are true, and we believe you will gain some insight into when and how your own organization might incorporate additive technology. Or, why it might reasonably choose not to! (Only one company in our account does use 3D printing; yet, as we will see, both companies have chosen wisely.)

This is how the story begins. Two industrial machine-tooling and sales companies, Tried-and-True Inc. and New-to-You Corp., each come across a design for a new retaining clip that will secure safety equipment to safety helmets. Both companies recognize the growth potential in providing the clips due to increased and mandated use of personal protection equipment.

Now, safety clips are high stress items; they are prone to breaking and require replacement fairly routinely. Consequently, while each company is open to considering various materials, certainly they will both be looking for a combination of toughness, chemical and heat resistance. Both companies expect the market will bear a final retail price of $25 for 3 sets.

But if the two companies agree on what they are producing, they differ on the means of production. Let’s take a look.

Concept Picture 1
Concept Picture 2
Concept Picture 3

Day 1

Tried-and-True Inc. has a wholesaling division and has established itself with a growing number of retailers across the country. Tried-and-True is a wholesaler and not an actual manufacturer. However, this company has periodically sought the production of items — some functional, some promotional — and so has a modicum of experience with direct production.

Tried-and-True decides to investigate production of the clips by injection molding. Injection molding (IM) is one of the most efficient and commonly used technologies in the world.

From past experience, Tried-and-True recognizes that the geometry of the clip may require modification. There are a number of variations in material thickness, which could cause stress and distortion during the cooling cycle.

Tried-and-True picks three reputable IM molds producers and solicits an estimate for a mold that will contain one left and one right clip (for one complete clip set).

New-to-You Corp. works with a couple offices in larger cities, but is largely focused on internet-based sales and supply. On occasion, when it has not been able to source a needed item from manufacturers in its network, it has arranged to produce that item. New-to-You has not been able to source suitable clips, so is now investigating production.

New-to-You has been hearing more and more about the uses of 3D printing. The company has heard varying stories about speed and quality, but has decided to explore the potential of producing the clips using additive technologies.

The clip design – as is – does not pose any problem for additive processes and does not require any modifications. New-to-You reaches out to three companies that offer 3D printing services, each one using a different medium: FDM printing, SLA printing or SLS printing .

Both companies decide to make use of FDM 3D printing to produce a series of prototypes to ensure the end product will meet expectations.

Both companies take reception of the 3D printed prototypes at roughly the same time. The prototypes now allow for functional testing, but also permit the two companies to do more market research to confirm expected demand.

And the similarities end there.

Day 7

When Tried-and-True approaches the mold producers, the decision about what material to use has not yet been finalized. The clips must have some flexibility, so they are contemplating polypropylene, polyethylene or possibly polyamide (nylon).

Anticipated sales are a consideration for material choice for the clips; greater sales volume may justify a higher quality material. Sales potential is also considered when determining mold design, as it may impact how many cavities each mold should have. Because Tried-and-True has an established network of potential distributors, anticipated sales are fairly high — 10,000 sets within a 12 month period.

Three mold producers submit estimates. All advise Tried-and-True that the design is fairly complex, with a number of sharp corners and changes in geometry. Quotes range from $31,500 to $37,500 per set.


The cost of producing each set will depend greatly on the material chosen. But the cycle time for each set is approximately 45 seconds. This means that one complete set can be produced every 45 seconds, or 80 sets per hour. Assuming a 12 hour production period, 960 sets can be produced per day.

Estimated material cost per set varies with the quote, but averages $0.40/set. Consultants place an extra $0.10 per set for post processing, so $0.50/set.

Tried-and-True does not have a injection press and will have to contract a 3rd party to produce the components. The low-end shop rate for a 65 ton press is around $65/hour, or $0.81 per set.

Cost estimates per set therefore total roughly $1.31 per set. Packaging and shipping costs are estimated to add an additional $0.60 per set to a total of $1.91. On the other hand, if the mold were designed with cavities for three full sets, every three sets would cost roughly $5.73. But this isn’t Tried-and-True’s first time around the block; it increases this estimate by 20% to account for unforeseen expenses and cost variations. Estimated cost of production for three sets of clips is $6.88.


Tried-and-True distributors all see value in offering the 3-pack of clips and have agreed to stock the item. They respect the $25 price point set by Tried-and-True, but would like a minimum 35 points, so the agreed upon distributor price is $16.25.

Tried-and-True will realize $9.35 on each sale, net of promotions, overheads and shrinkage.

This means that breakeven point to recover the cost of the molds is between 3,300 and 4,000 sales,. Based on the company’s initial projections of 10,000 sales in 12 months, it anticipates recovering its initial capital investment within the first half.

New-to-You Corp. believes that while the design will do well, volume will likely not exceed 500 units per month because the clips are mount-specific. Meanwhile, New-to-You has heard back from different companies about using 3D printing to produce the components.


  • Company A boasts the use of a small farm of FDM (Fused Deposition Modeling) printers. FDM offers the widest range of thermoplastic polymers. Drawbacks of FDM printing are speed and possibly aesthetics, since the layer lines are typically visible. Because the design of the clips is not ideally suited to FDM, printing them will require fairly extensive support, which in turn will require extra time. Company A offers 5 printers.

    Production Time: 48 minutes per pair + 10 minutes of post processing. Anticipated rate of production is 5 per hour.
    Material weight: 8.10 grams (@30% infill))

    The cost of each pair is dependent on desired material, but can range from $4.60 to $6.20 per pair. It will take 100 hours to produce 500 units, using all 5 machines working on the same project.
    This includes post-processing.

  • Company B offers production via a mid-sized SLA (Stereolithography) printer with a decent build volume (350mm x 350mm x 300mm). SLA printers use thermoset resins that catalyze when exposed to specific UV radiation like that of a laser. The process is considerably faster than FDM printing and can be less expensive. The finish is much finer than FDM — almost injection-mold quality — but a drawback is limited material choice. Additionally, post-processing may be needed if aesthetic changes (such as pigmentation) are required.

    Production Time: 60 pairs every 171.8 minutes (1 pair every 2.86 minutes). Cleaning and post processing is estimated to add an extra 2 minutes per pair.

    As with FDM, the exact cost of each pair is dependent on the chosen material, but ranges from $3.83 to $5.65 per pair. It would take approximately 40 hours to produce all 500 units using one machine. This includes post-processing.

    Additionally, the SLA producer offers the option of resin casting. In that case, the SLA printer would first create a mold of the desired units, and then cast the units using silicon or urethane.

  • Company C produces parts via an SLS (Selective Laser Sintering) printer. The print size is excellent (380mm x 380mm x 500mm). There are not as many sintering powders in the market as there are SLA resins and thermoplastic filaments. However, SLS machines offer a variety of polyamide and TPU materials that will suit the project’s needs well. SLS printing offers a number of benefits. The powder used acts as a natural support; it is possible to fill the entire build volume in one build with no or minimal component supports. The drawback is that, similar to FDM prints, the final aesthetic of the product reflects the layered build. The print also often feels powdery.

    Production time: All 500 pairs can be produced in one print. It will take 21.1 hours (2.53 minutes per pair). Cooling time adds an additional 14 hours (1.69 minutes per pair).

    Note that the cost per pair is a little tighter because material choice does not vary related costs by a significant amount. It would take approximately 35.5 hours to produce all 500 units using one machine. This includes post processing.


Aesthetics are deemed fairly important in an end-use consumer product and SLA offers a solid combination of aesthetics, speed and price. The final price per pair is $4.74. Packaging and shipping are estimated to add an extra $0.60 per set, or total $5.34 per pair, and $16.02 for 3 sets. New-to-You builds in a 20% margin for unforeseen variables, which increases the price to $19.22. If each set is sold at $25, New-to-You would earn $5.78 — a little more than 30%.

New-to-You decides to proceed with the project, ordering 500 sets of 3. New to You will receive 1,500 pairs at $4.74 each, for a total of $7,110 (not including overheads and incidental cost).

Since most of the company’s business is generated online, New-to-You begins preliminary marketing for the clips.

Day 21

New-to-You takes reception of the 500 full sets. The project was queued for 2 days, and it took the producer 5 days to print. Packing took an extra 3 days plus shipping. Total price works out to $17.62 per set.

Initial marketing efforts have generated interest, and before any clips were received, presales were already at 75 sets. A decent start. Sold units are sent out upon arrival.

DAY 30

The mold ordered by Tried-and-True has been produced, and trial runs have been successful.

While waiting for the mold’s completion, Tried-and-True has reached out to its distributors. The company has successfully managed to pre-sell 100 sets to each of three distributors. Moreover, each distributor expects to order an additional 100 sets within 30 todays.

Not a bad start.

Day 45

Tried-and-True has received its first 1,000 units and has begun distribution.

However. Tried and True has recently become aware that, unfortunately, New-to-You Corp has already entered the same market weeks ago

Fortunately, Tried-and-True‘s production margins allow it flexibility for a promotional effort. Tried-and-True will offer distributors a matching discount to create a special introductory price that will help establish the Tried and True clip in the market. The new introductory price will be $20; both Tried-and-True and its re-sellers agree to share the reduction evenly.

Based on those arrangements, the re-sellers double their initial orders.

New-to-You has received a generally positive response to sales efforts. The company is averaging 75 sets a week with a decent upward growth trend as word spreads. Based on that information, plans are laid out for another 500 to be placed in a week’s time.

In addition to the online sales, one of the other offices has shown some interest and requested samples. But it is not necessary to physically transport samples; instead, a digital file is transferred to the office and they will have a local 3D service provider print the samples for them.

Feedback from end-use clients is beginning to provide some very key insights. Some are asking if New-to-You offers clips that can fit a different safety hat and PPE combination. This same inquiry occurs with sufficient regularity that management decides to investigate further.

Day 60

Dropping the price for the clips from $25 to $20 has been positive in boosting sales and raising interest in the Tried-and-True clip. The company has, of course, kept a close eye on its main competitor and it seems that New-to-You Corp is unwilling or unable to match its $20 promotion price. Tried-and-True decides to extend that price indefinitely.

More good news: The clip’s initial success has motivated additional distributors to come on board and carry the clips.

It certainly seems that the price reduction was the right decision. Yes, it will take longer for the project to break even, but its capacity to reduce pricing should will strengthen Tried-and-True‘s efforts to achieve market dominance with respect to PPE safety clips.

Tried-and-True’s lower price point has taken the edge off the increased sales of the clips for New-to-You. Rather than growing to 100 sets per week as had been hoped, New-to-You continues to average 75 a week. While the end production cost of the first batch of 500 was a little less than anticipated, the company finds it does not have the margin to match Tried-and-True’s introductory pricing generally. It does agree to price match on a case by case basis for customers who request it.

Investigations into production of an alternative clip variation have yielded an interesting opportunity.

The general geometry and size of these clips is roughly the same as the first, so production costs would likely be flat. Company B, which had produced the first design for New-to-You, is willing to produce a smaller run of these clips concurrently with the the next order of the first design, with no extra tooling cost.

New-to-You sees a market advantage here. It can now offer a more diverse line of products at little to no tooling cost.


These examples can be carried on at length! But of course, the further into the future they are projected the more speculative such examples become. Obviously, production and costing are not the only factors in a product’s success.

That acknowledged, two broad differences can be identified.



Injection molding is the most efficient means of mass-producing polymer components, hands down. A company willing and able to front the tooling capital cost likely finds itself in the enviable position of being able to produce a desired component very quickly, and very inexpensively.

However, design complexity is one of the main drivers of mold cost. Additionally, the design is more static; changes to the product require the expensive production of a new mold.



While some 3D printing mediums are able to produce much faster than most people realize, it is unlikely that 3D printing will overcome injection molding anytime soon, either by way of speed or cost of production.

But it may not have to.

Mediums like SLA and SLS already offer a decent production speed and a growing array of available materials. These mediums are capable of highly complex design — and efficient iterations of that design — at a fraction of the costs associated with injection molding. For many companies, 3D printing is the intelligent choice.


Based on years of 3D measurement experience and market demand, SHINING 3D innovatively integrates blue LED light and blue laser into EinScan HX handheld 3D scanner. The hybrid laser and LED light sources make EinScan HX compatible with a wider range of object sizes, meeting multiple needs of users. High efficiency and reliable result give EinScan HX more application possibilities.

Hybrid Blue Laser & LED Light

Innovatively integrated with dual blue LED light and blue laser, improves scanning materials adaptability with less limitation for a wider range of applications. LED light scanning allows rapid 3D scanning. Laser scanning, which is less sensitive to ambient light, gives better performance to reflective and dark color surface.

Reliable Results

The high resolution and accuracy meet the needs of most industrial applications for reverse engineering and measuring.

Minimum point distance 0.05 mm

Accuracy up to 0.04 mm under Laser Scan

High Efficiency

Processing speed of EinScan HX under Rapid Scan Mode is up to1,200,000 points/s, and multiple blue laser lines under Laser Scan Mode makes scanning of most objects in minutes for reverse engineering, CAD/CAM, 3D printing and etc.

Portable & Easy Operation

EinScan HX is plug and play with user friendly software, which is easy to operate, no matter you are newbie or with professional experience in 3D scanning. The portability and flexibility use of EinScan HX has been considered to its ergonomic design for a more efficient and comfortable scanning experience.

Ergonomic Design


Full Color

With built-in color camera, it supports

full color texture capturing and tracking by texture.

EinScan HX Reverse Engineering Design Bundle

A hybrid light source 3D scanner with reverse engineering and CAD capabilities.

For more information, and how to purchase, contact us


Subscribe to the INFORM Newsletter and Keep Up On All Things 3D

Subscribe to the INFORM Newsletter and Keep Up On All Things 3D

Subscribe to the INFORM Newsletter and Keep Up On All Things 3D

Subscribe to the INFORM Newsletter and Keep Up On All Things 3D