Blog

The Coming Wave

 

What do all of the companies to the left have in common? 

All have integrated additive manufacturing into their business operations! 

Of course these are large corporations, but an increasing number of sole proprietorships are coming to appreciate the advantages additive manufacturing offers them.  Certainly, this technology is a boon to the auto and airplane maker, but not less so to the local plumber down the street. 

No matter what your business produces, no matter how large or small your organization, additive manufacturing can streamline your processes and save you money.

Why is this?

BENEFITS OF ADDITIVE MANUFACTURING (AM)

Additive manufacturing (AM) is an innovation in manufacturing processes that mitigates existing production and product development trade-offs.  The result? Reduced capital is required to affect scale and scope of production.

  • SCALE
    • Less capital is required to achieve economies of scale. 
    • Barriers to entry into a given product market are lowered. 
    • Return on investment is maximized.
  • SCOPE
    • Greater production flexibility and product customization is available per unit of capital. 
    • Marketplace differentiation is maximized. 

That’s the big picture!

Multinational Ikea is investing heavily into 3D printing to customize products for customers.
Startups are using additive manufacturing to offset capital expenses.
Established independent contractors are using additive to create innovative solutions for their clients.

More specifically, here are some of the ways AM can impact producers:

  • AM streamlines scheduling efficiencies
    • Rapid prototyping: Traditionally, prototype development involves custom tooling, coordination with external suppliers, and multiple hand-offs. Along with the delays, there is risk of miscommunication. AM largely eliminates these delays and risks.
    • Rapid design iteration: Reworking of a design ordinarily involves substantial effort and time since the production process must start again from the beginning. AM allows for seamless prototype creation and expedites design iteration.
    • Strategic alignment: 3D printing new product designs not only enables technical validation, but also accelerates your organization’s alignment on that new design—a key success factor, but often overlooked.
  • AM reduces costs
    • Less need for outsourcing: Traditional manufacturing methods (including creating manufacturing prints and layouts, programming CNC machines, and designing tooling) have historically defined the cost structure. However, with AM, prototypes can now be created inexpensively and in-house, without need for change orders.
    • Material reduction: Elimination of scrap and tooling often offset the higher per-volume costs of raw materials. AM can therefore dramatically reduce a prototype’s total material cost.
  • AM enhances product
    • Iterative design: Accelerated prototyping means more design and review cycles during product development.
    • Designer empowerment: Faster and cheaper prototyping reduces barriers to testing new product concepts. This cultivates innovation.
    • Stakeholder input: Because AM allows in-house product development, stakeholders inside and outside the company can more easily discourse with the designer and each other.
    • Market responsiveness: Producers can respond faster to market and customer demands, fix design flaws, and counter the competition.
  • AM simplifies manufacturing
    • Improved part characteristics: A design’s geometric complexity can be improved without great expense.  In-house designers can incorporate complex curvatures, nonstandard and varying wall thicknesses, and low-density volumetric filling easily and inexpensively.
    • Customer-specific product creation: Product iterations can be made-to-order for a given customer.
    • Decreased system complexity:  Components that previously needed assembly can often be 3D printed as a single unit — reducing system complexity and enhancing quality.
    • Nontraditional sources of design information: As product designs become increasingly digitized, opportunities for reverse engineering increase.
  • AM Reduces Constraints
    • Production location: Design and manufacturing can now happen virtually anywhere. Companies can dramatically reduce the cost and logistics of moving products from manufacturing locations to end users.
    • Tooling constraints: Product design is no longer constrained by mold and tooling requirements. The design process is now accessible and there is headway for invention.
    • Batch size: A truly single-unit minimum batch size allows on-the-spot production of short-run components as users wear them down in the field or imagine ways to customize them.
    • Waste: Material waste is minimized as designers and manufacturers find ways to complete tasks with less material and energy, and as AM components replace tooled parts.

It’s an impressive list, isn’t it? 

With such a vast array of benefits, you might be asking yourself how and where AM would fit within your organization. 

The introduction and effective use of of a new process is not merely a matter of an equipment purchase. i3D can walk you though a Seven-Step Assessment to help determine where additive manufacturing can best fit in your organization. We will help you maximize its benefits within your organization so you can chart a path to the future.


Standards in Additive Manufacturing

This article is fairly length and discusses:

You can click on any of the links above to jump to those specific sections.

Additive manufacturing (AM) has – and continues to – evolve dramatically in the sophistication of its technologies, processes, and materials.  A broad range of industries ranging from aerospace to consumer products is using AM to refine the development and production of products. The explosive growth in AM and how practitioners are deploying it is supported by a wide number of metrics, including the 20 fold gown in AM-related patents and the astounding growth in the sale of industrial AM systems over the past 4 years.

Fueled by growth of Industry 4.0 and the digital thread, AM has emerged as a catalyst in reshaping underlying assumptions about product complexity, supply chain logistics, and possibly even the manufacturing business model itself.

DEFINITION – Industry 4.0 : Industry 4.0 is a reference to what might otherwise be called the the Fourth Industrial Revolution. This is the ongoing automation of traditional manufacturing and industrial practices, using modern smart technology. Large-scale machine-to-machine communication (M2M) and the internet of things (IoT) are integrated for increased automation, improved communication and self-monitoring, and production of smart machines that can analyze and diagnose issues without the need for human intervention.

DEFINITION – Digital Thread: Tech Target defines the digital thread as “a communication framework that connects traditionally siloed elements in manufacturing processes and provides an integrated view of an asset throughout the manufacturing lifecycle.”

However remarkable the growth thus far, challenges lie on the horizon that if unaddressed could impede broader implementation of AM in industrial settings. And among those challenges, the lack of a widely accepted comprehensive set of technical standards within AM looms large.

Why do standards matter?

Standards are necessary to ensure that such rules of the game are established, adhered to, and respected by all parties. Standards have been a fundamental part of the manufacturing background for decades, they are essential as they outline the parameters that must be met to deliver a quality product.

It’s no different for AM

In many ways, AM is a ‘democratization’ of the production process. A digital file designed by one person can be modified and produced differently by a hundred different people by changing any number of settings used in the items creation. Given the capacity for endless variations, standards become all the more important because they define quality, pro­vide benchmarks and best practices.

Quality end-use, functional parts are already being produced via AM but widely ad­opted standards would help the quality over longer production runs. Ongoing efforts to establish AM standards should define the requirements for AM production, helping to enhance operational consistency and ensure quality as pro­duction and market adoption grows. As standards help assure quality for a larger volume of parts, the AM industry can scale, reach new levels of efficiency, and garner additional benefits from AM use.

Quality standards can also be particularly im­portant for AM because there are arguably more factors to consider than for conventional manufac­turing; now, digital design standards, interoperabil­ity standards, layer-by-layer material/build process parameters, microstructure strength, porosity, and post-processing/curing standards, among others, should all be considered. In a complex industry with a host of variables at play, AM standards should provide the “guidebook” for implementation.

Below is a shortlist of potential benefits that can arise from the application of standards to the use of AM:

  • Risk Mitigation: While standards will not mitigate all risks associated with any manufacturing process, adopting them can mitigate and control risks in ways that cross many domains such as worker safety, security of in­formation, intellectual property, the manufacturing process, and supply chain management.

  • Improved Repeatability: In the highly customizable environment represented by AM, standards can define key parameters — materials, print process, material storage, etc. In effect, stan­dards should provide a sense of predictability and repeatability within the AM ecosystem.

  • Quality Benchmarks: Quality is explicitly “the use of a standard against which other things of similar kind are com­pared.” As such, standards provide the benchmark criteria against which the quality of a company’s AM process—and products of that process—can be com­pared. A primary aim of standards should be ensure that designs, printers, and settings achieve a desired quantifiable and quality outcome.

  • Greater Efficiencies: By virtue of helping to accomplish the first three benefits, AM standards may also provide an opportunity for companies to focus their processes and practices in a more optimally efficient and less wasteful way. For example, the use of a standard output file format for the instructions needed to print a part would reduce the need to develop a custom file format and, in the process, enable greater interoperability—and effi­ciency—among different players across the AM eco­system. This can also reduce the need for rework during production, thus again reducing waste and improving return.


How….exactly?

That seems like a big list of features and you would be right to ask…how exactly?

  • Part Design: AM enables the creation of parts that can ex­ceed traditional design limitations, even mimicking a variety of organically shaped, nongeometric bio-inspired design. These new designs allow parts to exceed previous constraints and dem­onstrate increased feats in strength, weight reduc­tion, and even product performance. But in order to allow a quality assurance process to gauge whether the production is being controlled, for instance, traditional standards may not suffice.

    Revised and new standards have begun to evolve to bridge industry specific gaps to reflect de­sign within the AM ecosystem.

  • Production and Materials: Many traditional manufacturing standards are well estab­lished and may be applied to AM as well. However, there are areas where ad­ditional research is required address uncontrolled variables introduced by AM production processes. For instance, powdered bed fusion metal printing processes may trap miniscule amounts of gases within the printed material creating potential anomalies in the final part. Analysis and the introduction of production standards would be beneficial to account for such anomalies.

    Since materials used in AM are commonly found in traditional manufacturing processes, stan­dards related to storage, handling, and transporta­tion are relatively well articulated. It is still im­portant consider what the printing process itself does to the material, and how this may be used to improve the product. For example, AM may introduce inherent molecular de­formations which can actually prove beneficial in high-stress end-use cases where temperature, pressure, or material can actually be balanced out by the material stresses.

    This would require standards against which materials, printing processes, and in­herent material stresses can be judged.

  • Digital Thread: Applying standards on the data produced from the AM processes is the final and perhaps most challenging area. Our digital world is developing at an exponential pace as data formats and processing requirements seem to evolve every few years. With the “thread” approach to manufacturing becoming increasingly pervasive, it could be almost essential to consider the longevity of the AM digital presence and how rapidly anything we produce digitally will likely no longer be transferrable to the next file for­mat.

    While standards such as the .STL—a standard format for sending instructions to the 3D printer— exist and are widely applied today, there is an ever-present desire for something better. A major chal­lenge facing the application of data standards is how to build in longevity into the standard. Thus, AM should begin to invest effort in producing data and information standards that can be easily updated and copied to the next generation of hardware and computers.

Needs Assessment

Recognizing your organization’s need to identifying

  • Needs Assessment: This first step is likely the most important. Define your parameters and conceptual benchmarks and steps in the process where the company needs a standard. This includes determining your expectation of success.

  • Determine the Variables: As an example, determine printer settings available, then print using each variable and measure the outcome to understand the impact of the setting on the part printed.

  • Data Collection: Determine how you will measure the results of each pass of your process and variable settings. An example might be to identify how you will measure if your additively manufactured part met reliability requirements or how you plan to measure the humidity inside a printer during operation.

  • Experiment: Run your experiment several times, testing each variable in isolation, and measure your results.

  • Observe and Analyze: Analyze the data collected to see which variable settings provide the best outcome or best achieves your AM objectives. The best settings may likely become your new standard where industry standards do not exist.

Partial List of Existing Standards

Despite its relative newcomer status on the manufacturing stage, AM has garnered a fair amount of attention from standards organizations globally and a fair amount of work has already been done to bridge the gap in standards. Below is a partial list of of AM related standards and the organizations that have fostered them. Both the ASTM (F42) and ISO (ISO/TC 261) have formed committees that meet regularly to review and discuss modifications and additions to additive standards.

  • ISO/ASTM 52900 – Additive Manufacturing General Principles: co-publication between the American Standards for Technology and Materials and the International Organization for Standardization replaces the now cancelled ASTM F2792 Standard Terminology for Additive Manufacturing Technologies and serves as the basis for subsequent standards development.
  • ISO/ASTM 52901: 2017 – Additive Manufacturing General Principles – Requirements for Purchased AM Parts: gives guidelines for the elements to be exchanged between the customer and the part provider at the time of the order, including the customer order information, part definition data, feedstock requirements, final part characteristics and properties, inspection requirements and part acceptance methods.
  • ISO/ASTM 52910: 2018 Guidelines for Design for AM – This document gives requirements, guidelines and recommendations for using additive manufacturing (AM) in product design.
  • ISO/ASTM 52921: 2013 – Standard Terminology for Additive Manufacturing, Coordinate Systems and Test Methodologies – includes terms, definitions of terms, descriptions of terms, nomenclature, and acronyms associated with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize terminology used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems.
  • ASTM F3049 – 14 – Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes
  • ASTM F3122 – 14 – Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes
  • AWS D20.1/D20.1M:2019 – American Welding Society Specification for Fabrication of Metal Components Using Additive Manufacturing – This specification provides the general requirements for fabrication of metal components using additive manufacturing. It provides guidance for the interaction between the Engineer and the Contractor. It includes the design, qualification, fabrication, inspection, and acceptance of additively manufactured components. A commentary for the specification is included.
  • DNVGL-ST-B203 – Additive Manufacturing of Metal Parts – This is the first Standard to provide an internationally accepted framework for producing and using high quality additively manufactured metal parts for the oil & gas, maritime and related industries. It introduces approaches to manage the quality of additively manufactured metal parts, with each approach adapted based on the criticality of a part’s function. This helps to ensure predictability in the supply chain, reducing lead time and cost.
  • FDA – Technical Considerations for Additive Manufactured Medical Devices – Guidance for Industry and Food and Drug Administration Staff

NEW PRODUCT: EINSCAN HX

Based on years of 3D measurement experience and market demand, SHINING 3D innovatively integrates blue LED light and blue laser into EinScan HX handheld 3D scanner. The hybrid laser and LED light sources make EinScan HX compatible with a wider range of object sizes, meeting multiple needs of users. High efficiency and reliable result give EinScan HX more application possibilities.

Hybrid Blue Laser & LED Light

Innovatively integrated with dual blue LED light and blue laser, improves scanning materials adaptability with less limitation for a wider range of applications. LED light scanning allows rapid 3D scanning. Laser scanning, which is less sensitive to ambient light, gives better performance to reflective and dark color surface.

Reliable Results

The high resolution and accuracy meet the needs of most industrial applications for reverse engineering and measuring.

Minimum point distance 0.05 mm

Accuracy up to 0.04 mm under Laser Scan

High Efficiency

Processing speed of EinScan HX under Rapid Scan Mode is up to1,200,000 points/s, and multiple blue laser lines under Laser Scan Mode makes scanning of most objects in minutes for reverse engineering, CAD/CAM, 3D printing and etc.

Portable & Easy Operation

EinScan HX is plug and play with user friendly software, which is easy to operate, no matter you are newbie or with professional experience in 3D scanning. The portability and flexibility use of EinScan HX has been considered to its ergonomic design for a more efficient and comfortable scanning experience.

Ergonomic Design

Weight:710g

Full Color

With built-in color camera, it supports

full color texture capturing and tracking by texture.

EinScan HX Reverse Engineering Design Bundle

A hybrid light source 3D scanner with reverse engineering and CAD capabilities.

For more information, and how to purchase, contact us

BACK TO MAIN PAGE

Complexity Made Simple

Exhaust pipes are an auto component few of us ever think about…until a faulty one wakes up the neighborhood!

Despite it’s low profile, the exhaust pipe is an important part of vehicle performance. It not only dampens engine noise, but the flow of gases emitted from the vehicle also affects overall vehicle performance. Traditional design and production process for mufflers requires the formation of components that must be soldered together through a variety of steps. The need for soldering requires a relatively simple design. The automotive industry must create hundreds of thousands of exhaust pipes every year, so design must bow to mass production.

The end result of simple exhaust pipe design is inefficient air flow and power loss. Engine operation is less efficient than might otherwise be possible.

Can the exhaust pipe be improved?

Absolutely. Customers wanting to enhance their vehicles by investing in performance muffler systems can absolutely do so…at a cost. That shouldn’t come as a surprise. However, more efficient exhaust pipe designs are correspondingly more complex and have proven too difficult and costly to produce in the numbers required.

Until now.

The situation

Most mufflers are reactive, or reflective. That is to say, that they create backpressure to cancel out most of the sound created by the engine, and this is what causes performance loss. As you can see from the picture on the left, a typical exhaust pipe consists of four key components: the intake pipe, resonating chamber, perforated pipes and the outtake – exhaust – pipe. Gases are taken into the muffler via the intake pipe. Most of the engine sound is cancelled out in the resonating chamber before the gases are pushed out into the perforated pipes which deals with low frequency noise before final exhaust.

The less gases are forced to undergo directional changes (creating backpressure), the less the effect will be on performance. Thus if gases are allowed to free flow straight through a muffler, performance will be unimpeded.

The challenge and solution

The challenge is how to create a free-flow dissipative muffler that will still absorb as much sound as possible.

Working with a third party autoparts manufacturer, Shining 3D has successfully developed and customized a 3D printed auto exhaust pipe. As you have likely already guessed, the new device is created using additive manufacturing, which has allowed a more complex geometry to be introduced to the design.

1. First, Shining 3D designed a 3D model using Rhino (a professional design software). The internal structure of the new exhaust pipe would be optimized by 3D printing technology. It would be smaller but greatly increase operation efficiency.

2. Next, a prototype was created using SLA 3D printing technology. Shining 3D used the SLA-A line of 3D printers to accomplish this, and allowed for inexpensive, preliminary product testing and initial client feedback which would then result in more effective collaboration toward the end product.

3. Once the final design was decided, Shining 3D received approval and a product order. Production of the final print using stainless steel, was achieved using the EP-M250 printers.

How is it different from the one in your vehicle?

Cross section of the new AM built muffler

1. It has a more powerful acoustic wave. If that description sounds cool, so does the result. Because its structural design has been optimized, the new exhaust pipe is much more powerful than conventional models — and you can hear it.

2. It weighs less. By about 67%.

3. It has a power guarantee. When a vehicle is operating at high speeds, if the exhaust pipe cannot fully emit the exhaust gas, the engine’s power output decreases. However, the new 3D printed model efficiently channels exhaust outside the vehicle. Engine power is maximized.

Outside profile view

This new exhaust pipe design already has proven so successful that Ford Motor Company intends to install it in the Mustang for trial assembly. The sales order was thereby expedited and Ford Motor Company could receive delivery of the exhaust pipes sooner.

It’s not just purr. It’s power, baby, and the exhaust pipe of the future.

Score another win for additive manufacturing and Shining 3D!

AM for Education

 3D printing is not just novel and exciting. 

This technology has society-changing power akin to the advent of the printing press, the steam engine, the telephone and the computer.  Design and manufacturing are transformed – they are now democratized.  Your students deserve early access to this technology and the skill sets needed to employ it.

By 2017 — according to a 3D Dimension Research paper — 55% of schools in North America had already acquired 3D printers. Of those, 77% intended to purchase additional 3D printers so as to make them more accessible to their students.

Is your school keeping pace?

3D printing has vast applicability within the school system. Consider, for a moment, how computers are used within your school by administrative staff, teachers and students. The ordinary and everyday benefits of computers are astounding. The learning applications are, of course, incalculable.

What if we told you that 3D printers are analogous?

This tech allows your school to produce needed items inexpensively. What if we told you that your school no longer needs to buy expensive math manipulatives or molecular model sets because teachers (or students!) can 3D-print them for pennies? That your maintenance staff can now 3D-print replacement parts (from washers to coat-hooks and far beyond) for pennies?

But 3D printing is also a gateway to learning through design. Your elementary students can use computer-assisted design software designed for young children to learn basic engineering principles. They can design and 3D print simple jewelry or keychains in art class. Your junior high students can 3D print models of internal combustion engines or shark teeth for science class. Or whistles to help them understand audio frequencies. Your high school students can 3D-print the chemical structure of benzene for chemistry class. Or design a bicycle or a prosthetic hand for an Industrial Arts project.

3D printing can be used to produce lesson-centered material representations of: well, almost anything!

But that is only scratching the surface. The learning applications of 3D printing go far beyond that.

Just as it has been important for students to become increasingly conversant with computers as their education progresses, it is likewise imperative that students understand how 3D printing is transforming society. Did you know that 3D printing has another name? It is also called additive manufacturing. (For more information on why that term is used, please see Additive Manufacturing 101.) Creative processes of design & development of a product and physical creation of that product are in a phase of rapid evolution due to the cataclysmic changes that additive manufacturing (3D printing) is having on industry.

3D printing not only expedites the whole creative process but democratizes it. Items that could previously only have been designed and produced by large corporations — and expensively, at that! — can now be designed and created by children. A 3D printer is a tool that — together with age-appropriate computer-assisted design software — students can learn to employ in creative and constructive ways. In genuinely useful ways. These young learners will — literally— rebuild society with 3D printers.

They simply need to be equipped.

VIEW MORE PICTURES

3D printing & educational theory

In order to evaluate the value of 3D printing in classrooms, a little background might be required.

Some of the pedagogical benefits of this technology can best be explained by ‘constructivism’, sometimes referred to as ‘constructionism’. This is an educational philosophy introduced by Jean Piaget and developed by Seymour Papert.

Constructivism essentially posits that children learn about the world around them by touching and feeling (or in the case of toddlers, sometimes tasting!). That there are strong connections between information retention and tactile sensation, and also between retention, visualization and spatial relations. It is thought that this early formative relationship between learner and the physical environment can be perpetuated.

Any teacher or parent interacting with children can attest to the power of ‘material proximity’ in education. Consider the difference between telling a child about an ice cube, showing the same child a picture of an ice cube, or allowing a child to feel and handle an ice cube.

The more the child is able to interact with the object, the more the child will be able to relate and to retain information about the object in question. In other words, learners can expand their own knowledge by ‘constructing’ – or making – and interacting with physical objects.

In many ways, constructivism stands in contrast to the mass-education movements of the 20th century which gave rise to teacher-centered instructional methods.

The advent of the Internet has presented both challenges and opportunities to the top-down diffusion of information. Today, a student wanting to learn about the Pyramids of Giza can Google and access hundreds of articles on the subject within seconds, much of which goes much deeper than information contained in the textbook they are reading.

 

 

3D printing & project-based learning

However useful being able to replicate lesson specific items may be, it is only scratching the surface of the potential of 3D printing in the classroom. Increasing in popularity are more student-centered approaches to teaching, including its integration in what is popularly referred to as Problem or Project Based Learning (PBL).

The essence of Project Based Learning requires students to work on a project over an extended period of time – from a week up to a semester – that engages them in solving a real-world problem or answering a complex question. They demonstrate their knowledge and skills by developing a public product or presentation for a real audience.

Some of the skills cultivated through this process include:

Collaboration: Relationships formed during collaboration is a huge part of PBL. Not only do students learn how to work better in groups—providing their own input, listening to others, and resolving conflicts when they arise—they build positive relationships with teachers, which reinforces how great learning is. Students also form relationships with community members when working on projects, gaining insight for careers and beyond.

Problem Solving: Students learn how to solve problems that are important to them; they have an opportunity to address real community needs.

Creativity: Students apply creative thinking skills to invent new product designs and generate possibilities for projects.

In-Depth Understanding: Students build on their research skills and deepen their learning of applied content beyond facts and rote memorization.

Self-Confidence: Students find their voice and learn to take pride in their work, boosting their agency and sense of purpose.

Critical Thinking: Students learn to look at problems with a critical thinking lens, asking questions and coming up with possible solutions for their project.

Perseverance: Students learn to manage obstacles more effectively, often learning from failure and possibly starting over from scratch.

Project Management: Students learn how to manage projects and assignments more efficiently.

Curiosity: Students explore, ask questions and form a new love for learning.

Empowerment: Students take ownership over their projects, reflecting on and celebrating their progress and accomplishments.

The 3D printing process promotes active learning and encourages creative thinking. It empowers students. Imagine, for example, asking your senior high small-groups to design a drone capable of carrying a size C battery. Or asking your junior high students to design an elastic-propelled vehicle. 3D printing is a very strategic application of project-based learning!

 

Where do we go from here?

Of course, it starts with an investment into a versatile and safe 3D printer, but mere acquisition of a 3D printer is insufficient. In order to fully realize the benefits of 3D printing technology for students and your school, we recommend the development of solid integration strategy.

This always includes ensuring teachers are properly equipped: they themselves may need instruction on the use of 3D printers and associated software, or guidance on how to integrate 3D printing into their class plan for the year. Some manufacturers, including Flashforge, have developed curricula for educator use, but what integration should look like really up to you.

i3D has developed a Seven Step Program to help you plan where and how to include 3D printing in your educational setting. We also offer consultations for those institutions wanting help developing a school-specific integration plan.

What are your goals for your students this year? How can we help?

 

BACK TO MAIN PAGE

 


 

Additive vs. Subtractive

Who wins in this match-up? 

You might expect we are going to tell you that the winner is additive manufacturing? 

Not necessarily.  Each has advantages.

Let’s have a look at both processes.  We’ll compare additive manufacturing with more traditional forms of production in a real-life contest and reach a better appreciation for the circumstances where each is more effective. 


CASE STUDY ROUND ONE – THE SIMPLE GEAR

Let’s assume your organization needs to produce a simple gear to replace an existing one. Perhaps you need one like this one to the left. This is a 45-tooth gear and it measures 8mm x 6.25mm (3.15” x 0.25”). And it cannot be purchased outright from a supplier.

CONTESTANT: Conventional Manufacturing

You could ask a conventional manufacturer to reproduce the gear for you.  This simple gear is too complex to cut out accurately by hand, and the size variables alone make off-the-shelf dies impractical.

They might use laser-cutting to cut a sheet of high-density polyethylene (HDPE) and create your gear. They inform you that there will be a one-time set up fee of $105.00, plus the cost of the plastic ($0.50).  They also charge $1.00 per cutting inch.  Including the octagonal shape in the center, this will come up to roughly 11 inches, or $11.00. The total cost of one gear using conventional subtractive methods will be $116.50 plus applicable taxes.

Because the setup time for the production of more than one gear will not change much, if you needed two gears, the cost would be $105.00 + (2 x $11.50) = $128.00.  Averaged out between two gears your cost will be $64.00 per gear. So the unit cost goes down. For three gears, $46.50. For ten gears, $22.50 per unit. For 100 gears, $12.55 per unit, and so on.

Depending on how many gears you expect to need, a mold might be fabricated in order to further cut costs.

Your gear is a small component, but it does have some finer details, so the estimated cost for a mold would place it at approximately $1,500. However, once the mold is in place your cost, including material, cooling and labor, now drops down to $0.50 per gear. In order to justify the capital cost of the mold over laser-cutting, you will need to produce at minimum 125 to compare with laser cutting. However, if you need 1,500 gears, having a mold produced would be the economical choice.  Your unit cost will now be $1.50 — and less with every gear produced.

Of course costs may vary from supplier to supplier, and from region to region, but the basic principle remains the same. It both cases, the average cost per gear goes down as the number of gears goes up.

CONTESTANT:  Additive Manufacturing

You decide to produce this same gear using your 3D printer.  Your costs will be very different from traditional manufacturing.

Production of this same gear requires precisely 8.55 grams of material and will take one hour to produce. Perhaps you decide to use HDPE filament which you purchased at a cost of $35/1,000 g, or $0.035/g. Of course as a business-owner you will want to take into account the electricity used and the operating time of the machine into account.  You calculate that these operating costs increase your unit cost by an extra $0.30/gram, for a total of $0.335/g, multiplied by 8.55 g of material.  Your cost is $2.86 per unit.

Note that the cost for additive manufacturing is flat. It does not reduce with volume unless the producer chooses to discount. If you need 10 gears instead of just the one, it will take 10 hours and the cost will be $2.86 x 10 = $28.60. If you need 100, it will take 100 hours and the cost will be $286.00.

A cost equilibrium is reached between Additive Manufacturing and Conventional Manufacturing when the cost of producing a part using either method is the same.


CASE STUDY ROUND TWO – THE HELICAL GEAR

CONTESTANT: Conventional Manufacturing

For conventional manufacturing methods, an inverse cost relationship exists with regards to the complexity of the item being produced. The more complex the item, the more costly it will be to make.

There are a few different reasons for this, starting with availability of machines to produce simpler items. For example the flat gear above can be cut by a laser cutter or a water jet cutter.  In fact, because it is a polymer gear, probably various smaller cutters could work.

What if your organization required a helical gear instead? There are good reasons for such a choice. Helical gears have slanted teeth.  They reduce noise and vibration, and are stronger.

However, using conventional methods, helical gears also prove a bit trickier to produce. They cannot simply be cut out of a flat sheet of plastic or nylon with a laser cutter.  Instead they must be carefully machined out of a thicker chunk of plastic using special processes such as hobbing or milling.  Producing only one gear can be cost-prohibitive — $500 for machine set-up and charges for machine down-time from other projects are not unusual.

Creation of a mold to allow for mass production of helical gears similarly requires more time and higher capital costs than for our first gear.  More attention must be paid to the mold to ensure proper dimensions and uniform cooling time, especially when using polymers.

CONTESTANT: Additive Manufacturing

What about producing a helical gear using additive manufacturing?  Well, complexity of the gear really isn’t as big a concern. 

The same helical gear can be produced – layer by layer – using the exact same costing method discussed above (material weight x material weight cost).

Again, as with the quantity/cost graph, the complexity/cost bar continues to be relatively flat for additive manufacturing.  Occasionally, it can be helpful to print very complex items more slowly.  And occasionally, use of temporary support materials is needed with extremely complex designs.  However, the complexity of an item often has little bearing on the over-all cost.

THE VERDICT?

Unless your business can justify the cost of a mold, additive manufacturing will offer the cheaper, faster process and the best per-unit production cost.  If the item has a complex design?  This will be all the more true.

What about your business?  Could additive manufacturing improve your production?  We’d love to talk to you about that. 

3D Printing Emissions: Printing it Safe

 This article discusses a problem….and solutions.

The problem is air purity. A recent study identifies a startling variety of potentially toxic aerosols produced by 3D printer emissions, and the conditions under which they’re produced. Our health is certainly not something to be taken lightly. At i3D, we believe it’s important to be aware of the nature of the identified hazards and the solutions currently available to mitigate them.

Previous studies had suggested that desktop 3D printers released minute particle emissions. However, these studies had lacked controlled testing and did not specifically characterize the particles and chemicals emitted. However a two-year investigation conducted by scientists at UL Chemical Safety and Georgia Institute of Technology has provided better information about the nature of the emissions and the consequent impact of desktop 3D printers on indoor air quality. The results were recently published in two separate studies in Aerosol Science and Technology (here and here), and they were not encouraging.  Testing had identified hundreds of different compounds, including some known health hazards.

These findings come at a time when these low-cost machines are increasingly appearing in commercial, medical, and educational settings. Marilyn Black, vice president and senior technical adviser at UL and a co-author of both studies, says her team’s findings should serve as a wake-up call, and they’re asking health researchers, scientists, and other institutions to investigate further.

Standard desktop 3D printers produce detectable amounts of ultra-fine particles, or UFPs, while printing. UFPs are nano-scale particles that are invisible to the human eye, but could lead to serious health issues, particularly if inhaled and delivered to the body’s pulmonary system.

“Ultra-fine particles are very fine particles that are less than 0.1 micron (100 nanometers) in diameter,” said Black. “More than 90 percent of the particles we found emitting from 3D printers were in the nanoparticle range. These small particles, when inhaled, can reach the deepest part of the lungs, where they can enter tissues and cells, and can lead to cardiovascular and pulmonary effects in humans.”

When a printing process is initiated, a burst of new particles is created, which then becomes airborne. It’s this initial batch that tends to contain the smallest sizes and the highest UFP concentrations during the entire print, according to the new research.

In tests, the researchers primarily looked at filament fabrication printers that use more common thermoplastics like PLA, ABS and nylons.  Specifically, the researchers looked at FDM 3D printers (fused deposition modeling), which are not only the most popular 3D printing technology currently in use, but also known to produce some of the highest levels of UFPs.

Black’s team conducted a small number of toxicity tests on these printers using several methods, including chemical tests and in vitro cellular assays (the use of live cells).  ABS (Acrylonitrile Butadiene Styrene) and PLA (Polylactic Acid) filaments were tested, and all tests indicated at least some level of toxic response, though the toxic response varied by filament type.

As much as the volume was an important finding, the variety of different substances contained in the emissions was of equal importance.

No less than 200 different volatile organic compounds (VOCs) were detected in the invisible puffs emanating from the printers during operation —including many known and suspected irritants and carcinogens. Common VOCs detected included formaldehyde (a carcinogenic organic compound), styrene (a flammable chemical and irritant), and caprolactam (a compound known to cause irritation and burning of the eyes and throat, headaches, confusion, and gastrointestinal problems).

The researchers also documented the different factors involved in the production of UFPs. Factors that affected the types of UFPs produced include the temperature of the nozzle, the type of filament used, the filament and printer brand, and filament color. Factors that affected emission levels included extrusion temperature, filament material, and the filament brand.

“Our research provides technical information on the mechanism for particle formation and shows the operational factors make a difference.  This information can assist manufacturers in adapting new technologies and controls to minimize or reduce the emissions.”

It is important to note that this study was not designed to be a detailed look into the long-term health effects of 3D printers. Accordingly, the researchers are now asking scientists to perform complete risk assessments to determine dangerous levels of toxic emissions, while asking manufacturers to do what’s necessary to minimize emissions.


So what solutions are available? How can these concerns be effectively addressed?

The study recommended desktop 3D printers be used in well-ventilated spaces with outdoor air flow. Users are also advised not to stand close to the printer during operation.

The use of filtration systems capable of filtering out VOCs and UFPs can also play a significant role in addressing the problem.

3D printers with built-in filtration systems are increasingly available — such as the FUSION3 F410, CREATOR 3 and TIERTIME MINI 2ES.

Stand-alone filtration systems are also available and may be an excellent solution for retrofitting existing printer systems to better air quality standards. The ZIMPURE filtration system that can be adapted to fit almost any 3D printer, and the 3DPRINTCLEAN Model 660 enclosure provides air filtration along with excellent thermal controls and security.

The bottom line? Implement these solutions and print safe.



 

Additive Manufacturing in the Age of Covid-19

 

3D Printing for Healthcare: Advantages & Cautionary Notes

You don’t need to be a news junkie to know the background.

On March 11, 2020 the World Health Organization declared a global pandemic. Within days, country after country came face to face with the stark reality that it was completely unprepared for the task ahead. The global shortage of medical supplies and personal protection equipment (PPE) continues to make headlines as governments scramble to obtain desperately needed equipment.  Reactions from various countries have ranged from extreme rationing to assignment of emergency powers. 

Among the too-few positive news items of this new era is the staggering philanthropic response of the global 3D printing community. Within days, if not hours, designers had uploaded digital files of 3D-printable PPE; much of this is free and available to anyone with a 3D printer and a desire to help. Some of the more popular designs (the Prusa face shield, for example, or the Copper 3D Nanohack mask) have seen thousands of downloads, and hundreds of thousands of prints and donations to regional health authorities.

Some of the most powerful benefits of additive manufacturing are now on full display.  One current example illustrates this especially well: The American government contracted a 3D printing company to deliver 1,000 specially designed clips for disinfectant spray carriers.  Originally these components had been injection-molded, but they had been rendered obsolete by the original manufacturer and medical authorities urgently needed an alternative.  Within 48 hours, new clips were designed, approved, produced and post-processed at a final cost approaching only $1.00/component.

These are, after all, the benefits additive manufacturing promises:

  • Rapid prototyping
  • Iterative improvements
  • Quick turnaround time
  • Little to no capital requirement
  • No minimum batch size

But wait. All these benefits and no drawbacks?

The technology is indeed revolutionary in its capacity to meet urgent demands such as those medical facilities now face. But yes, there are drawbacks to the application of additive manufacturing to health care needs in the current crisis. It is precisely because the technology is so new and not widely understood that it can sometimes be used to create products that are actually poorly suited to their intended use.

At i3D, we applaud all those pitching in to help. We do however believe a few cautionary notes are in order, and they pertain to guidelines and standards.

In the first weeks of the pandemic, most of the designs produced and made available over the internet were created with little to no oversight from (or even consultation with) the medical community. Obviously medical authorities need to be certain that donated items will perform to medical standards for design. In a healthcare setting, not just any face mask design will do.

Suitable design is not the only consideration, however. Material must also be relevant to the end use setting and needs. For example, the vast majority of 3D-printed PPE was produced by enthusiastic members of the 3D printing community in the most commonly available FDM polymers: polylactic acid (PLA) and polyethylene terephthalate (PET). However, these polymers cannot be subjected to many widely used sterilization protocols in clinical settings. (This is only very recently changing, as we discuss HERE.) Consequently, healthcare institutions have been understandably reticent to accept some PPE donations. Those that were accepted by medical institutions were mostly designated single-use plastics. (Recyclable of course. But.)

So knowing healthcare requirements for these prints is essential. This will allow us, as a community, to provide materials that are truly effective in the fight against COVID-19 — and truly beneficial to frontline workers.


3D Printing and the Supply Chain Concern

The most current news of the hour is the potential jeopardy of value and supply chains and how that may threaten the way we live and do business for months to come.

In this context, the value of integrating additive and digital manufacturing technologies is now in sharp focus. Digital manufacturing refers to automated manufacturing and can include any CNC device including lathes, cutters, breaks, etc. (Additive manufacturing, 3D printing, is a sub-category of digital manufacturing.  For a short primer of the additive process, click here.) 

Can additive manufacturing help resolve supply chain concerns?

Without a doubt.

Let’s look at how the unique benefits of 3D printing can be part of the solution.

Efficient Supply Chains

Additive manufacturing gives us ‘Just-in-Time’ production in the most literal sense.  Production of key components can be localized, and delivery can be just hours or days away. Moreover, digital manufacturing can reduce costs connected to overstocking and associated risk as suppliers gain better insight into supply chain issues (e.g. inventory levels, delivery status and demand cycles).

How?

Digital storage and transmission of design files for parts, components and products allows for production WHEN needed, WHERE needed. (The Prusa face shield, for example, was developed in Czechoslovakia, but they are being printed all over the world.) 

Similarly, parts suppliers in remote locations (such as Fort McMurray, AB, or Juneau, AK, or smaller islands, for example), can literally download an approved file and have the part(s) ready to deliver within hours.

No storage, no shipping. Reduced overhead and reduced wait. That can spell relief in times of crisis.

Efficient Innovation

Design collaboration and improvement is simplified and faster.

An example: the Nanohack mask.

Within days of the pandemic being officially declared, Copper 3D released the Nanohack 1.0 mask.  The Nanohack design adopted an innovative means of blending the benefits of Copper 3D’s core strength – its unique antibacterial filament – with the properties of the base polymer, in this case PLA.  The design could be printed flat on a build plate, and then thermoformed with relative ease to fit the wearer’s face. A great start! But over the following days, some limitations became apparent (mostly the difficulty achieving proper sealing and of insufficient airflow with the lone vent). Feedback from the medical community and other 3D designers quickly birthed the Nanohack 2.0, a considerable improvement over the first iteration.

In addition to human feedback and input into the design process, digital manufacturing also allows for predictive analytics, machine learning, connectivity and 3D modeling. All invaluable tools in a continuous cycle of development and innovation.

 

Efficient Operations

Automated, cloud-based solutions streamline processes and improve product quality. Analytics are more accessible, reducing costly rework and downtime. Detailed product representations are possible, performance monitoring is simplified and delivery to the market is expedited.

Efficient Use of Resources

The additive manufacturing process is inherently ‘lean’ and ‘green’.  Incrementally building a part ‘up and out’ – layer by layer – ensures that only the right amount of material is used. This stands in stark contrast to subtractive manufacturing processes which generally result in a fair amount of waste. A CNC lathe making a spindle or a gun barrel creates a mound of waste metal chips (“swarf”; our word for the day!) These chips are not easily recyclable as they are contaminated with cutting fluid and often cross-contaminated with other metals.

 

 

 

 

This is one of dozens of PPE related files that have come available online throughout the world. This one is available through the US Department of Health’s digital warehouse, where they have been accepting proposed PPE and submitting them for testing and approval.

A Call to Action…

Additive manufacturing is beginning to flex its muscles. The days of watching multi-hour FDM prints and questioning reliability and production capacity are fading fast, and are being instead replaced with ‘what’ and ‘how many?’

In order to unleash the full potential of additive manufacturing however, industry and use-specific standards must be developed. When additive manufacturing is used simply for prototyping or non-functional components, designers are free to use whatever settings and materials they deem most suitable. However, where additive manufacturing is producing functional end-use components, industry standards are needed to ensure safety and performance. Organizations such as ASTM, ASME and the FDA have done significant work already in standards development for additive manufacturing.  However the sheer breadth of applications for additive technologies, the seemingly constant addition of new methods and new materials all present moving targets.

Is your business looking to create end-use products for health care institutions or otherwise? It will be worthwhile to invest a little time researching needs. Identify any industry standards that may already be in place and go on to ensure that materials and design meet the needs of the end-user and the governing body’s requirements.


Can you see the potential for additive manufacturing to step up to the plate to address the risk to your own supply chain? We’d love to talk with you about how your business or organization can boost efficiency by integrating additive manufacturing into your operations.